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680. Methods for Computing Xuccessive Stability Constants from 
Experimental Formation Curves. 

By H. IRVING and (MRs.) H. S. ROSSOTTI. 
Attention is drawn to the approximations implicit in existing methods 

for computing, from experimental data, the successive stability constants 
governing the formation of complexes in step-equilibria. A new “ correction 
term ” method is described. This makes use of the symmetry properties of 
the formation curve for the particular case N = 2. 

best” set of stability constants from 
inconsistent experimental data is shown to be soluble by a least-squares 
treatment after an algebraic transformation. This procedure is applicable 
to systems of higher complexity. The effects of improved methods of compu- 
tation are illustrated by examples taken from the literature. 

The problem of computing the 

Note on Symbolism.-Following Bjerrum most authors have used k n  to represent the 
stability constant of a complex MLn relative to MLn - 1. Schwarzenbach uses KML. Now 
K is customarily used for equilibrium constants, and k for velocity constants, and to 
avoid confusion we shall use Kn for the above stability constant. The overall constant 
[ML,]/[M] [L]“ (see p. 3399) has been variously designated EL&&, (Schwarzenbach), K ,  
(Bjenum), and f i n  (Fronaeus and other Scandinavian authors). We prefer the last, so that 
the expression f i n  = K1K2K3 . . . K, in our terminology corresponds to Kn = klk,k, . . . k n  
in Bjerrum’s. 

THE formation of a complex species ML, from a central atom or ion M, and molecules or 
ions of a Zigad L, is assumed to be governed by a series of thermodynamic equilibrium 
constants defined by 

where K ,  is the classical (concentration) equilibrium constant, F,  = fnn;,-, .fL/’f-, and 
charges are omitted for the sake of generality. If L is uncharged, ML, and MLn - carry the 
same ionic charge, so that, provided measurements are made in solutions of constant, and 
not too high, ionic strength, F,  may be set equal to unity, and the convenient approxim- 
ation Kn Bjerrum (KgZ. Danske Videnskab. SeZsk., 1946, 22, Nr. 18) used 
a single average value of Fn in his studies of complexes formed by cupric and chloride ions. 
The same author (“ Metal Ammine Formation in Aqueous Solution,” P. Haase, Copen- 
hagen, 1941) introduced the concept of the degree of formation, or ligand number, E, which 
he defined as the average number of ligand molecules or ions per molecule of M, and showed 
that for all systems in which only mononuclear complexes occur, values of Z, and of [L], 
the concentration of free ligand, are related by the equation 

where Pn = K1K2 . . . K,, and Po = 1, by definition. 
Experimental methods for the determination of stability constants, developed by 

Leden, Bjerrum, and Fronaeus, have recently been discussed by Sullivan and Hindman 

KnT = (MLn)/(MLn- 1)(L) = KnIFn 

KnT is valid. 

;:;x (Z - n)pJL]n = 0 . . . . . . . (1) 
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(J .  Amr. Chem. SOC., 1952, 74, 6091), who point out that sets of equations of the type (1) 
can be solved for unique, non-trivial values of K,, K,, and K ,  if the determinant 

I * O  

(nl - 1)[L1] + . - - - N)[LJN 
(Zl - l)[LLl-] + . . . @*- - N)[L,-]-V 

This expresses the condition that N inhomogeneous equations of the type (1) are needed 
for the evaluation of N stability constants in systems where the highest complex has the 
formula MLN. In practice, experimental data exceed these minimal requirements, and 
the real problem is to find those values for the constants, kn, which will best represent all 
the experimental results. Two difficulties arise. (i) The substitution of experimentally 
determined values of Z and [L] into (1) will give a set of m>N equations which will probably 
be inconsistent owing to experimental errors. (ii) The data obtained experimentally 
may not be fully representative of the whole function. As a particular case, linear equa- 
tions formed from neighbouring points may be ill-conditioned. The present paper deals 
with this problem of obtaining the best set of stability constants from experimental values 
of It and [L], and will be restricted to systems for which N = 2 and the equation 

is applicable. 
The current methods for obtaining K, and I<, from the formation curve are discussed 

below, as the limitations and assumptions underlying the calculations do not always seem 
to be fully appreciated. Additional methods for computing stability constants are sug- 
gested, and applied to  some formation curves in the literature. The present object is to  
compute the best stability constants from experimental data, rather than to discuss the 
significance of the values so obtained, or the quality of the experimental work. 

Successive Approximations.-From equation (2), we have 

(2) 
- 
n + (Z - l)K,[L] + (E - 2)K,K,[Ll2 = 0 . . . . 

Method A. 

and 
1 ?z + (n - l)Kl[L] K - - .  

- [L] ( 2  - Z)K1[L] - * - - - - 
which emphasise that the calculation of K,depends on the value of K ,  and vice versa. Bjerrum 
(09. cit., p. 37) applies these equations to the refinement by successive approximations of 
" temporary " constants obtained by other methods. If n experimental points determine 
the formation curve, there are m(m - 1)/2 pairs of values which could be treated in this 
way; but some judgment would be necessary since several combinations would yield ill- 
conditioned equations and the resulting values of K ,  and K, would have to be omitted from 
the general average. 

Solution of Simultaneozls Equations.-When N = 2, the required stability 
constants can be obtained by solving pairs of simultaneous equations derived from (2). 
The criticisms of Method A apply equally here. 

Method B. 

Method C. Interpolation at Half ii Values.-From equations (3a) and (3b) we have 

log K ,  = PL,,, + log C2/(1 + c+ 12K,/K,)1 * - - * (44  

(4b) log K, = PL,,, - log [2/(1 + 41 + 12K,/K,)1 
and 

where pL, represents the free ligand exponent when Z = a. Provided that K,- 1 >> K n ,  
approximately equal amounts of MLn - and ML, will be present in solution when It = n - &, 
and the contributions of ML,- and ML,+l may be neglected. Following Bjerrum (op. 
cit., p. 36) we may write 

Unless K1/K&102'5, this very commonly used approximation can introduce considerable 
error (see p. 3404), and in the case where N = 2 it has the disadvantage of using only two 
points on the formation curve. 

* . . .  

logK,=pLn-,  . . . . . . . s . (5) 



119531 Stability Comta.tits from Experimentul Formation Czwves. 3399 

Method D. Interfiolation at Various Z Values.-Rewriting equation (2) for the point 
(pL1 - d, 1 - d),  we have 

which reduces to 

when K1>K,. Similarly, 

The use of these equations over the whole range of the formation curve (O<d<l)  is only 
justified if K,/K,> 104, though in this case Method D is preferable to Method C as it can be 
applied at several points along the formation curve, and the mean values of K ,  and K ,  
obtained from the results. If K,/K,<lO*, calculated values of stability constants show a 
drift which is more pronounced the lower the value of d .  Albert (Biochem. J., 1950, 47, 
531) averages constants obtained in this manner. Jonassen, LeBlanc, and Rogan ( J .  
Amer. Chem. SOC., 1950, 72, 4960) take the most probable value to be that obtained from 
the point where d = + ; this is, in effect, employing Method C. 

Use ofthe Mid-point.-(i) At the mid-point of the formation curve, where 
Z = 1  

The abscissa of the mid-point will therefore give a value for the overall constant Pt whose 
precision is limited only by that of the experimental measurements. The common practice 
of evaluating individual values of K ,  and K,  from the product K1K2. so obtained, together 
with equation (5), demands a full appreciation of the implicit approximations, and does not 
make full use of the experimental data. 

(ii) For a system in which N = 2, Bjerrum (o$. cit., p. 24) defines a spreading factor, 
x = d m ,  and relates it to the mid-point slope, D, of the formation curve at  the point 
where Z = 1 by the expression D = -2-303/(1 + x ) .  From the measured mid-point slope 
the ratio K1/K2  may be calculated, and individual values of K ,  and K ,  obtained from this and 
equation (9). This method is only applicable where K,/K, lies between lo3 and lo-, (as 
K1/K2 --+ 00 , D + 0, and as K J K ,  + 0, D --+ -2.303) and it uses only a very small 
portion of the formation curve in the region of the mid-point. Significant errors may be 
introduced both in plotting the ‘‘ best ’’ formation curve to  pass through the experimental 
points, and in measuring its mid-point slope. 

Method F. Schwarzenbach’s Graphical Method.-Schwarzenbach, Willi, and Bach (Helv. 
Chim. Acta, 1947, 30, 1303) described a graphical method for computing the dissociation 
constants of dibasic acids from data obtained by potentiometric titrations ; this was later 
applied to the computation of stability constants of metal complexes (Schwarzenbach and 
Ackerman, ibid., 1948, 31, 1029). 

Their method can be adapted to the computation of stability constants from experimental 
values of 5i and [L] by plotting values of A = (Z - l)[L]/Z and B = Ci;i - 1)/(2 - Z)[L] as 
abscissae and ordinates respectively. All lines passing through pairs of points ( A ,  B) should 
intersect when extrapolated at the point (l/Kl,K2). This procedure is unreliable if lengthy 
extrapolation is necessary and is only suited to experimental data of high precision. 

General Comments.-It will have been seen that the choice of computational method 
depends on the ratio Kl/K,  in the system under consideration. An approximate value of 
this ratio may rapidly be obtained from the mid-point slope, D, of the formation curve, 
without introducing the concept of the spreading factor. For systems in which N = 2, 
D is given by 

and values of D for given K,/K, ratios are given in Table 1. Thus, if Method Cis to be used, 
K,/K, must be >102.5, and D must be > -0-23. The formation curve is then wave-like. 
For Method D, K1/K2 must be >lo*, and D must be > -0.04, giving rise to a formation 
curve showing two very distinct steps. Method El is applicable to systems where 
10-a<K,/K2<103, and -2-2<D<-0.14. It is seen that, in the “normal” case, where 

log K ,  = pL1-d + log (2(1 - d)/[d + 2 / d 2  + 4(1 - d2)k2/k1]) - (7) 

log K ,  = pL1-d + log [(I - d) /d]  - - - * - - ( 8 4  

lOgK2 = PLl+d -log [(l - d)/d] . . . 9 . . (8b! 

Method E. 

K,K2[L,I2 = 1, or log K,K, = 2pL, . . . . . . (9) 

D = -4*606/(2 + 1/K1K2) 
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K1>K2, O>D> -1-535, while if K2>K1 (e.g., for the complex ammines of Ag' in water) 
- 1.535 >D > -2.303. 

TABLE 1. The mid-point slope, D, for systems in which N = 2. 
log K J K 2  .................. 5 4 3 2 1 0 

log K J K 2  .................. -1  -2 -3 -4 -5 -a3 

D .............................. -0.0145 -0.0451 -0.137 -0.384 -0.892 -1.535 

D .............................. -1.989 -2.193 -2.267 -2.292 -2.300 -2.303 

Additional Methods for Conzpztti?zg Stability Constants.-The ideal method should 
minimise the subjective " smoothing ' *  implicit in most graphical procedures and ought to 
employ the experimental data as fully as possible. The two new methods presented below 
do not fully attain this ideal, but represent a real improvement on existing ones. 

FIG. 1. Correction terms. 
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Method G. " Correction-term " Method.-In a system where N = 2, the theoretical 
formation curve is symmetrical about its mid-point so that from (8) and (9) 

From (7), 

and 

where the '' correction term," y, is given by 

. . . . .  pL1-a + PLl+d = 2pL1 = logK1K2 (10) 

(1 la> 

(1W 

. . . . . . .  log Kl = pL1- d + y 

log K2 = pLl+d - y  . . . . . . .  

.~ 
2(1 - d) - . . . . .  

d + l/d2 + 4( i  - d2) . K,/Kl Y =  

and depends in magnitude both upon d and upon the ratio K2/K1.  If K1/K2>104, equation 
(12) reduces t o  y r log [(l - d) /q  , and the correction term depends only on the value of 
d (Method D) and becomes zero in the special case where d = Q (Method C). 

If pL1-d and pLl+d are two points on the formation curve disposed symmetrically 
about the mid-point, then from equations (10) and (11) 

ApLd = pL1-d - pLl+d = lOg(Kl/KJ + 2y . . . .  (13) 
By using equations (12) and (13), corresponding values of y and ApL have been calculated 
for nine values of d for each of a series of values of K1/K2 ranging from lo5 to The 
relationship between y and ApL is shown graphically in Fig. 1, but full advantage of the 
method can only be taken if this isidrawn on a much larger scale, for which the necessary 
data are given in Table 2. 
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The correction-term method is applied as follows to pairs of values (Z, pL) symmetnc- 
ally disposed about the mid-point. Suppose the experimental values were pL,., = 9.50 
and pLrS = 8-00. The value of the correction term, y( = -0.23), is read off from the 
curve for d = 0.6 as abscissa corresponding to ApL = 1-50. Thence log K ,  = 9-50 - 0.23 
= 9.27, and log K ,  = 8-00 + 0-23 = 8-23. The process is repeated for several values of 
d and the mean value of the calculated stability constants is taken. In practice, it is 
convenient to draw the best formation curve through the experimental points and to read 
off values of pL1 d for those values of d tabulated. Although this involves some " smooth- 
ing " of the experimental data, the correction-term procedure is very rapid and reliable as 
it takes fully into account the complicating factors introduced by the absolute magnitude 
of the ratio K,/K, which may vitiate the application of Methods C and D. On the other 
hand, small changes in ApL correspond to large changes in y when the ratio K,/K, becomes 
low (cf. Table 2). This is especially marked in the central part of the curve, and if K,<K,, 
values calculated from d smaller than 0.5 will not be reliable. 

TABLE 2. The  relationship between y and pL fm several values of d. 
d = 0.1 

l o g K , l ~ ,  Y APL 
5.000 0.954 3.092 
4.000 0.954 2.092 
3.523 0.942 1-639 
3.000 0.916 1.167 
2-523 0.861 0-802 
2.000 0-746 0.507 
1-523 0.593 0-336 
1.000 0.388 0.225 
0.523 0.178 0.167 
0.000 -0.065 0.130 

-0.477 -0.296 0.116 
-1.000 -0.551 0.101 
-1.477 -0.786 0.095 
-2.000 -1.046 0.091 

d = 0.6 
logK,IK, Y APL 

5.000 -0.176 5.352 
4.000 -0.176 4.352 
3.523 -0.176 3.876 
3.000 -0.177 3.354 
2.523 -0.178 2.880 
2.000 -0.184 2.367 
1.523 -0.198 1.918 
1.000 -0.238 1.477 
0.523 -0.317 1.158 
0.000 -0.459 0.917 

-0.477 -0.633 0.789 
-1.000 -0.852 0.705 
-1.477 -1.069 0.661 
-2.000 -1.317 0.634 

d =  
Y 

0.602 
0.602 
0-599 
0.592 
0-574 
0.523 
0-430 
0.274 
0.093 

-0.131 
- 0.354 
- 0.602 
-0.835 
- PO92 

d =  
Y 

-0.368 
-0.368 
-0.368 
-0.368 
- 0.369 
- 0.372 
-0.381 
- 0.407 
- 0.465 
- 0.582 
-0.736 
- 0.944 
- 1.154 
- 1.398 

0.2 
APL 
3.796 
2.796 
2.325 
1-816 
1.376 
0.954 
0.663 
0.452 
0.336 
0.262 
0-231 
0-204 
0.193 
0.184 

0.7 
APL 
5-736 
4.736 
4-260 
3.737 
3-261 
2.745 
2.285 
1.815 
1.452 
1.164 
0.996 
0-887 
0.831 
0.796 

d = 0-3 
Y APL 

0.368 4.264 
0.368 3-264 
0.366 2.789 
0-364 2.272 
0.355 1.812 
0-330 1.341 
0.273 0.976 
0-159 0.682 
0.004 0.515 

-0.202 0.405 
-0.413 0.349 
-0.656 0.312 
-0.885 0.294 
-1.141 0.282 

d = 0-8 
Y APL 

-0.602 6.205 
-0.602 5.205 
-0.602 4.727 
-0.602 4.204 
-0.603 3.728 
-0.604 3.209 
-0.609 2.741 
-0.615 2.230 
-0.662 1.846 
-0.749 1.497 
-0.879 1.281 
-1.066 1.133 
-1.268 1.060 
-1.506 1.012 

d = 0.4 
Y APL 

0-176 4.648 
0.176 3.648 
0.175 3.173 
0.174 2.652 
0-169 2.185 
0.158 1.684 
0-120 1-283 
0-036 0.928 

-0.085 0.693 
-0.278 0.556 
-0.477 0.477 
-0.715 0.430 
-0.940 0.402 
-1.193 0.287 

d = 0.9 

-0.954 6.908 
-0.954 5.908 
-0.954 5.431 
-0.954 4.909 
-0.954 4.432 
-0.955 3.910 
-0.957 3.437 
-0.964 2.928 
-0.980 2.482 
-0.032 2.064 
-1.123 1.770 
-1.279 1.557 
-1.459 1.441 
-1.680 1.359 

Y APL 

d =  
Y 

o*ooo 
0.000 
0-000 

- 0.001 
- 0.004 
-0.012 
- 0.035 
-0.094 
-0.196 
- 0.362 
- 0.549 
-0.778 
- 1.000 
- 1.251 

0.5 
APL 
5-000 
4-000 
3.523 
3-003 
2.531 
2.025 
1-592 
1.188 
0.916 
0-725 
0-621 
0.556 
0.523 
0.502 

The value of the correction term, y, may also be calculated from the exact equation 
l - d  y = log ____ d (14) 

which is useful in the absence of Fig. 1 if only occasional use is made of the correction-term, 
at d values which are not tabulated.* 

Since the above treatment postulates the symmetry of the formation curve about its 
mid-point, it cannot be used for complex systems where N > 2 .  Lack of symmetry may, 
however, also appear even in some systems where N = 2 if polydentate ligands are involved. 
In the system CU++ and diethylenetriamine (" dien "), Z increases slowly with [L] over the 
range 1 <E<2 and does not approach 2 asymptotically (Jonassen et al., Zoc. cit.). This is 
explicable if the second ligand molecule is not co-ordinated through each of its nitrogen 

* We are grateful to one of the Referees who pointed this out, and who also made fruitful suggestions 
which have been incorporated in this paper. 

7 F  



3402 h v i q  and Rossotti : Methods fw Compding Successive 

atoms. Ligands such as ap-diamino-carboxylate ions could chelate with metal ions in 
three different ways (Albert, Biochem. J., 1952, 50, 690) to give three different 1 : 1 com- 
plexes and six different 1 : 2 complexes. In these circumstances the formation curve 
would not be represented by equation (2). Unsymmetrical formation curves may also 
result if polynuclear complexes are involved. Many unsymmetrical formation curves are, 
however, depicted in the literature for systems where N = 2 and where none of these 
possible complications is expected. In such cases the experimental work must be regarded 
as suspect. It is always advisable to test an experimentally determined formation curve 
for symmetry about its mid-point, for, if this test fails, only limited confidence can be 
placed on stability constants calculated from it by any of the methods described in this 
paper, since they all postulate that the results may be represented accurately by equation 

Method H .  Least-squares Treatment.-Equation (2) can be rewritten as  
(2) * 

which is the equation to a straight line. Since, in practice, the term [L] may vary by 
several powers of ten, it is seldom convenient to plot E/(Z  - 1)[L] against (2 - E)[L]/(Z - 1) 
to obtain the slope, K,K2, and the intercept, -Kl, of the best straight line. The 
constants are best evaluated by the method of " least squares '' which makes use of all the 
experimental data and avoids subjective " smoothing " of data incidental to plotting the 
"best straight line." A minor disadvantage arises from the properties of the functions 
Z/@ - 1) and (2 - Z)/(E - l), which becomes very large in the centre of the curve 
(0-95<E<l.05) and very sensitive to slight experimental errors in E. Points in this 
small region are therefore best rejected in this treatment. 

This method was first tested on three systems with widely different values of K J K ,  and 
as many experimental pohts as possible. The values of K ,  and K ,  obtained by Method H 
being used, values of rt corresponding to the experimental values of pL were calculated. 
Values of pL, Ee,t., and An(= Zespt. - Zdc.) are'given in Tables 3, 4, and 5, together with 

TABLE 3. Cu++ a d  dimethylethylellediamine (" dimen "), in water, at 25" (K,/K, -lo3) 
(Irving and Griffiths, J., 1953, in the press). 

PL ... 10-889 10.351 10.074 9-954 9-835 9-726 9.607 9.518 9.270 8.942 8.414 7.727 - 
Hexyt. 0.048 0.192 0.313 0.374 0.433 0.493 0.553 0.614 0.773 0.853 0.971 1.Q88 
An ... + O . O l l  -0.013 -0.021 -0.021 -0.016 -0.014 -0.005 -0.016 -0.046 +O.OOl -0.002 -0.007 
PL ... 7.311 7.163 7-025 6.907 6.799 6.701 6-593 6.486 6.271 6.009 5.672 

AE ... -0.004 +0.015 +0.004 +0*029 $0.013 +0.011 +0.017 +0.020 +0.013 +0-012 -0.003 
- 
nerpt. 1.202 1.259 1.319 1.376 1.432 1.491 1.547 1.604 1.716 1.821 1.918 

W K ,  1% K, log!% 0 

Method A 9.69 6-65 16-34 - 
Method G 9.69 6.69 16-38 - 
Method H .............................. 9.69 6.7 1 16-40 0.017 

.............................. 

.............................. 

TABLE 4. CU++ and glycine in water at 25" (K1/K2 (Irving and Griffiths, 
unpublished). 

pL ......... 9-612 - 
mexpt. ...... 0.008 
AE ......... - 0.005 
pL ......... 8-076 
nexpt. ...... 0.564 
AZ ......... - 0.003 
pL ......... 7.084 
nexp+,. ...... 1.251 
AZ ......... - 0.005 
- 

8-667 
0.250 

-0.025 
7.993 
0.620 

- 0-002 
6-975 
1.339 

-0-016 

8.607 
0-270 

-0.019 
7.902 
0.681 
0.000 
6-838 
1.425 

-0.007 

8.549 
0.296 

-0.018 
7-803 
0.749 

6-708 
1.515 

- 0.009 

+ 0.00 1 

8.492 
0-326 

-0.019 
7.7 15 
0-807 + 0.005 
6-565 
1.606 

-0.015 

8.423 
0-35 1 

- 0.009 
7-630 
0.872 

- 0.001 
6-380 
1-697 

+o*ooz 

8.358 
0.385 

7-530 
0.938 + 0.001 
6.192 
1-788 

-0.005 

-0.013 

8-294 8-221 
0.426 0.463 

7.423 7.318 
1.012 1-088 
0.000 -0.004 - 
5-886 5.034 
1.880 1.972 

+0-002 + O . O l O  

-0.008 + 0.001 

8.150 
0.51 1 
0~000 
7-215 
1-169 

.0.014 

U 

- 1% K ,  %K, log82 
Method A .............................. 8.16 6-73 14.89 
Method G 6-78 14.91 - .............................. 8-13 
Method H .............................. 8.12 6-77 14.89 & O - O l O  
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(Bjerrum, Zoc. cit., p. 132). 
T A B L E  5. Ag+ a d  ammowia in 2~-aqueous  ammonium nitrate at 30" (K1/K2 

pL ..................... 4-051 3-816 3-656 3-523 3-385 3-232 3-030 
nzxpt. .................. 0-247 0.495 0.741 0.988 1.230 1.477 1.71 1 - 
AZ ..................... +0*002 -0.003 -0.002 $0.002 -0.004 -0.002 -0.006 

1% Kl 1% Kz 1% B 2  0 

Method A .............................. 3-20 3.83 7.03 & 0.004 
Method G 3-84 7-02 - .............................. 3-18 
Method H .............................. 3-19 3.84 7-03 & 0.004 

the standard deviation, Q = [Z(AE)2/number of observations]+. The stability constants 
calculated by Methods G and H are compared with those obtained by the original workers. 
In these three systems, it is seen that the stability constants calculated by using Method H 
are in very good agreement with those obtained by the original workers using Method A, 
and that the standard deviations of AZ are low. As a further test of Method H, stability 
constants were calculated for some systems where the workers' own method of calculation 
seemed suspect, or where the experimental formation curve was incomplete. The results 
are given in Tables 6-9. 

TABLE 6. Cd++ and L-asparagine in  water ( K J K ,  - lOO.6) (Albert, Biochem. J.,  
1950, 47, 531). 

pL ............... 4.75 4-40 4-10 3-80 3-62 3.45 3-30 3-16 3.05 2.92 - 
neXpt. ............ 0.10 0.20 0-40 0-57 0.74 0-93 1-11 1.26 1.42 1.56 
A% (Albert) _.. +Om019 f0.040 +0-008 +0-033 +0.041 3-0.012 -0.033 -0.057 -0-121 -0-152 
AE (Method H) -0.014 -0.017 -0.067 -0.003 -0.003 +0.006 -0-007 +0.002 -0.051 -0-067 

1% Kl log% 10gBz (I 

Albert .................................... 3-87 2.90 6.77 f0.069 
Method H .............................. 3-71 3-07 6-78 &O-036 

The stability constants obtained by using Method H lead to muchlowerstandard 
deviations of A n  than do those obtained by Albert, using Method D, which should only be 
used for systems in which K,/K2>104. 

The magnitude of a is a measure of the precision, rather than of the accuracy, of the 
experimental data. It is seen that the values of AZ obtained by using Method H are very 
small in the centre of the curve, but increase as d increases. This effect, which is observed 
with several of the systems studied, is due to the " weighting " of the central terms by the 
least-squares treatment. It is fortunate that the points where d is small may be deter- 
mined with greater experimental precision than those where d -+ 1. 

TABLE 7. Ni++ and oxine, in 70% aqueous dioxan at 25" (KJK2 (Maley 
and Mellor, AustraZian J .  Sci. Res., 1949, 2, 98). 

pL ........................ 11.71 
nerpt. ..................... 0.37 
AZ (M. and M.) ......... +0-128 

pL ........................ 10.83 

AE (M. and M.) ......... -0.079 
AE (Method H.) ......... -0.021 

- 

AE (Method H) ......... +0.131 

nexpt. ..................... 1.20 - 

11-68 
0.47 + 0.046 + 0.052 

10.51 
1-42 

+0*004 
-0.070 

11.63 
0.53 + 0.020 

+0.014 
10.33 

1.48 
- 0.003 
+o-080 

11-56 
0.63 

-0.030 
-0.020 
10.28 
1.53 

-0.019 
+Om033 

11.54 
0.70 

- 0.054 
-0.075 

9-94 
1.80 

- 0.095 
- 0.035 

11-27 11.08 
0.85 1.04 

- 0.043 - 0.06 1 
-0.017. -0.021 

9.57 
1-91 

- 0.055 
- 0.022 

1% K ,  1% K2 1% B2 0 

Maley and Mellor ..................... 11 -65 10.35 22-00 f0-068 
Method H .............................. 11.64 10-47 22.11 *0*056 

In,this system the experimental points do not lie on a smooth curve, and even with 
Method H, a high value of ts = k0.056, is obtained, indicating a low precision of the data. 
The constants calculated by using Method H do, however, fit the experimental curve 
appreciably better than do these obtained by Maley and Mellor, using Method C. It has 
been pointed out (p. 3400) that the use of Method C is not justified unless K1/K2>102*5. 

0-5, but it is seen 
that, even with such a very incomplete formation curve, Method H gives satisfactory 

Values of Z (= 1 &d) are only recorded in the two regions where d 
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results, which are in good agreement with those obtained by Jonassen et aZ., using, in 
effect, Method C. 

This system is also represented by an incomplete formation curve (0.85 <Z<1-75). 
Johnston and Freiser used Method C to obtain K,, but do not indicate howK, was calculated. 
From the value they obtained, it seems possible that equation (9) was used. This illustrates 
the misleading results which may be obtained when Method C is applied to a formation 
curve where K ,  Values of Z calculated from stability constants given by the authors 
differ considerably from the experimental values. Not only are the deviations large, but 
there is an unmistakable trend in their magnitude. On recalculation by Method H, a 

This would be expected in such a system, where K,/K,>102.5. 

K,. 

FIG. 2. Formation curves. 

satisfactory fit is obtained with log I<, = 13-05 and log K ,  = 13-15, values which differ 
considerably in magnitude from those calculated by the authors, who, moreover, report 
log K,>log K,. It is significant that the revised value for the overall constant p, is in good 
agreement with that previously obtained ; this emphasises that calculated values of K ,  
and K ,  may together satisfy equation (9) , although the individual constants may both be 
in error. 

TABLE 8. Ni++ and ' r  dim," in water at 30" (K l /K2  -lo2.') (Jonassen et aZ., Zoc. cit.). 
pL .................. 11-10 - 
n,,,t. ............... 0.376 
AE (Jonassen) ... -0.015 
AE (Method H) ... -0-023 

nerpt. ............... 1.295 
AZ (Jonassen) ... -0.019 
A n  (Method H) ... -0.019 

pL .................. 8.55 - 

11-05 
0-406 

-0.018 
- 0.033 

8.32 
1.399 

- 0.003 
- 0.003 

10.97 
0.443 

-0.011 - 0.025 
8.16 
1-502 

-0.015 
-0.014 

10.68 
0-582 

+0-016 + 0.002 
8.09 
1.532 

- 0.004 
- 0.004 

10.51 
0-639 + 0.051 

+0-038 
7-93 
1.604 

+0-014 
+0*015 

10.39 
0.689 + 0-055 + 0.047 
7-78 
1.679 

+0*015 
+0-018 

1% K ,  1% K ,  1% 8 2  U 
Jonassen et al. ........................ 10.85 8.14 18-99 &0-025 
Method H .............................. 10-82 8.14 18-96 &Om024 

TABLE 9. Cu++ and oxine in 50% aqueozcs dioxan (K,/K, -1) (Johnston and Freiser, 
J .  Amer. Chem. SOC., 1952, 74, 5340). 

PL .................. 13.18 13.16 13.07 13.05 12.89 12-74 12-72 12-50 
nexpt. ............... 0.84 0.90 1.05 1.11 1.33 1-48 1.55 1.75 
AE (J. and F.) ... $0.087 +Om048 -0.037 -0-048 -0.103 -0.109 -0.16 -0.180 
AE (Method H) ... +0.035 +O-OOS 0-000 -0.014 +0.035 -0-013 -0.020 -0.018 

- 

log K, log K ,  log /I2 Q 

Johnston and Freiser ............ 13-49 (calc.) 12.73 26-22 &0.108 
Method H ........................... 13.05 13.15 26-20 &0*02l 

In view of the real possibilities of authors' failing to obtain the most satisfactory con- 
stants from their experimental data through unsatisfactory methods of computation, it 
is clearly desirable to state precisely the method of calculation adopted, so that even in the 
absence of experimental values for Z and pL it would be possible to assess the reliability 
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of the values given and even to estimate with the aid of Fig. 1 or Table 2 the order of 
magnitude of the correction which must be applied. 

Systems of Higher CompZexity.-There are no simple methods of calculating stability 
constants in systems where -3. If all the successive constants differ greatly in magni- 
tude the formation curve has N distinct steps (cf. Fig. 2a for the case where N = 3) and 
Method C can be used. When N = 3 and K ,  - K&K3, the formation curve will show only 
two steps, corresponding to O<E<2, and 2<Z<3 (Fig. 2b). Here log K3 = pL,, (Method 
C) and K ,  and K ,  may be calculated by treating the lower step as a complete formation 
curve of a system where N = 2, using one of the appropriate methods described above. 
Fig. 2b represents a fomation curve where K&K, K3, which can again be treated as if 
it consisted of two separate portions. When the successive complexes are of similar 
stability the curve loses its wave-like character (Fig. 2c) and a set of trial constants [obtained 
appropriately from equation (5)] must be refined by successive approximation by using 
the following eauation 

The general equation (1) for a formation curve may be written in the form 
n = s p  - 4 
71 = 0 (n - 1) . [L]”-lp, = 0 . . . . . . 

of which equation (15) is a particular case for N = 2. If there are m experimental values 
for the points @, pL), substitution in (17) will give m inhomogeneous linear equations in 
P1,Pz.. . p ~ .  The normal equations obtained therefrom by the usual methods form 
a set of N simultaneous linear equations which can be solved for p1,p2. , . pLv by matrix or 
other methods. 
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